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The bifurcation from localized stationary solutions to traveling patterns is studied in two-
dimensional reaction-diffusion systems. In the case of local kinetics, which is of the Bonhoeffer—van
der Pol type, the bifurcation point can be computed directly in terms of the stationary solution for
arbitrary parameters. A stripelike pattern, which is the extension of a one-dimensional localized
pattern into the second spatial dimension, is considered as a concrete example of such a pattern.
The branching mode is computed for piecewise linear kinetics in a singular limit. The bifurcation is
predominantly subcritical. Eventually the linear stability analysis of the branching traveling pattern
is performed. Following the bifurcating branch, the last mode to become stable is a laterally wavy

perturbation with an arbitrarily long wavelength.

PACS number(s): 03.40.Kf, 87.10.+¢, 82.20.Mj

I. INTRODUCTION

In recent times considerable interest has arisen in soli-
tary stationary patterns in dissipative media, called dissi-
pative solitons [1]. These occur quite naturally in several
experimental setups of the reaction-diffusion type. As
examples of spatially one-dimensional systems, patterns
of current density occur in gas discharge systems [2], in
semiconductor devices [3], and on coupled electrical os-
cillators [4]. Further, temperature patterns have been
observed on catalytic ribbons [5]. There has also been
a lot of work done in two-dimensional systems. In addi-
tion to several studies on semiconductor devices [6], we
want to mention an ac-gas discharge system [7], which
nicely allows direct observation by eye. An appropriate
phenomenological description of such systems is given by
an activator inhibitor model with Bonhoeffer—van der Pol
kinetics [8],

Ted = €2Av + f(v,a) — w,
w Aw+v—~vyw, v>0,

(1)

with f(v,a) being a cubiclike nonlinearity as in Fig. 1(a)
depending on some parameter a. For suitable parame-
ters, the occurrence of dissipative solitons (DSs) could
be demonstrated numerically [8]. However, the complex
structure of (1) obstructs a detailed analytical under-
standing of such patterns in the general case. Never-
theless, the approach of the singular limit in parameter
space € — 0 leads to sharp variations of v and thus gives
way to approximating analytical results for strongly sep-
arated scales [9,10]. The DS can be interpreted as an
excited domain with v slaved to the excited branch of
the characteristic vy (w); compare Fig. 1. Outside this
region, v is located on the lower branch of the charac-
teristic v_(w). The dynamics within the domains is thus
reduced to a one component system. The different do-
mains are connected by sharp frontlike boundaries. At
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FIG. 1. (a) Typical nullclines of Eq. (1). For most of the
article we study the piecewise linear caricature presented in
(b). Our analysis does not depend on the fact that there is a
single fixed point of the kinetics.
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these boundaries the variable v changes inside a layer
of width O(e) from the excited to the lower branch of
f(v,a). Although the reaction term v — yw rises steeply
within this range, the large diffusion of w allows us to
consider w as a constant there compared to the variation
of v. In this way, the translation dynamics of the fronts
can be reduced to a free boundary problem [11]. Their ve-
locities are exclusively determined by the local inhibitor
value w at the position p of the respective front. This
value w(p) itself is determined by the spatiotemporal dy-
namics of the domain variable w, closing the feedback
loop in our explanation. For a front to be stationary
in this lowest order approximation, w(p) must fulfill a

Maxwell condition fvv_*((;"g)))) [f(v,a) —w(p)]dv = 0. Typ-
ical DSs for different values of ¢ are presented in Fig.
2. In order to obtain explicit analytical results, even for
€ > 0, quite often a somewhat artificial characteristic is

considered [12,13], which is piecewise linear [Fig. 1(b)]:
f(v,a) =H(v—a)—wv. (2)

H is the Heaviside step function and a satisfies 0 < a < 1.
DSs of the form given in Fig. 2 exist in the parameter
range 5(—11—7) < a < 3. Convergence toward the limiting

value a = % lets the DS collapse, whereas the approach
of the lower limit leads to a diverging width of the DS.
In general, the stability of a DS depends on the relative
time scales of front movement and domain dynamics of w.
For a fixed front position the domain dynamics is stable,
whereas for fixed domains the front dynamics is unstable.
Decreasing 7 leads to an acceleration of front dynamics
and, as a consequence, to a destabilization of the DS.
In a spatially infinite system with rather general reac-
tion kinetics, two fundamentally different destabilizing
modes have analytically been found close to the singular
limit: breathing [14] and traveling [15,16]. Consideration
of the piecewise linear characteristic again explicitly ren-
ders patterns and bifurcation points [13,17]. Breathing
DSs can be found experimentally in p-type germanium
semiconductor devices [18]. Traveling patterns are well
known from the study of excitable media; see [19], e.g.
The only difference from (1) is the fact that the diffusion
of w is either weak or nonexistent there. This excludes
the existence of stable stationary DSs. Nevertheless, a
bifurcation cascade has been found that leads from the
homogeneous equilibrium state to traveling solitary pat-
terns [20].

In an experimental situation, purely traveling patterns
can only appear in a circular systems. Due to the mirror
symmetry of the stationary DS, the bifurcation to trav-
eling patterns is a pitchfork in the translationally sym-
metric system. Boundaries, for example with zero flux
conditions, break the translational symmetry of the sys-
tem and obstruct the traveling mode. They consequently
lead to a perturbation of the pitchfork bifurcation. The
result is a Hopf bifurcation due to the repulsive bound-
aries. The branching mode, then, is a moving DS, which
is reflected when approaching a boundary, i.e., swinging
dynamics results. Exactly this could be found in exper-
iment [21-23]. We will come back to that point later in
this paper in a slightly different context. The reflection
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at the Neumann boundary is an essential difference in
comparison with excitable media. Without or with weak
diffusion of w the pulse is destroyed instead of being re-
flected.

Let us now consider the situation in a two-dimensional
system. There are two different elementary forms of sta-
tionary DSs with high symmetry. One is a radially sym-
metrical spot. The other is the extension of the one-
dimensional pattern into the additional direction and
thus a stripe. In the one-dimensional system (1) there
is a surprisingly simple criterion concerning the branch-
ing of a traveling mode [16]. The bifurcation point can be
computed in terms of the stationary DS. In the following
we extend this criterion to higher-dimensional systems.
However, breathing and traveling are not the only desta-
bilizing modes any more. As the boundary of the excited
domain is now a line, there is the possibility of destabi-
lizations, which deform this boundary. Ohta et al. [11]
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FIG. 2. Typical shape of a dissipative soliton in reac-
tion-diffusion systems of activator inhibitor type depending
on €. When decreasing ¢ from 0.2 (a) to 0.05 (b), the front-
like regions contract. In the singular limit € — 0 of (1) they
become sharp and the outer domains separate close to the
homogeneous stationary state from an excited domain in the
middle (c). The patterns are computed for piecewise linear
kinetics with @ = 0.25, y = 1.
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present the stability analysis of the stationary stripe (or
spot) in the case of piecewise linear kinetics and for a
reduced dynamics in the range of ¢ < 1. Extending this,
we construct the branching traveling stripe and show
that subcritical branching is predominant. Studying the
traveling pattern, we perform the stability analysis and
present the resulting bifurcation set. Finally, we discuss
some consequences from the perspective of bifurcation
theory.

II. BRANCHING OF A TRAVELING PATTERN

Let us consider an arbitrary stationary solution
(9(r),®(r)) of the two-dimensional, infinitely extended
version of (1) with r := (z,y). The discussion of a system
on a torus is completely analogous. To analyze the stabil-
ity of that solution, we decompose (v, w) = (9, @)+ (0, W)
with (4, w) being a small deviation:

et = e2Av + f/(v)d — W,

®|m

(3)

= AW+ 79 — yw.

g

Due to the indifference of the pattern toward transla-
tions, there is always a set of eigenfunctions with zero
eigenvalues. These used to be called Goldstone modes.
Each of them causes an infinitesimal shift of the pat-
tern in a certain direction ro and thus is proportional
to the respective directional derivative (Op, 7, Or, W), with
Ory = ng—l - V. This can be directly seen when taking an
arbitrary directional derivative of the stationary equation
(1). We divide the first line of (1) by 7 and get

0= Tl ABp¥ + (7€) 71 f!(0)0po @ — (7€) " 10pow@
- ABroW + OroV — YOp, W

—L ( g:og ) . 4)

How is the bifurcation point representing the branching
of traveling DS characterized? Since a DS (7, w) traveling
with velocity ¢ into direction rg is a solution of

—COroV 77 leAv + (1) [ f(v,a) — w], 5
—cOrow = Aw+ v — yw, (5)

Il

the right hand side has to permanently generate the
Goldstone mode g = (8, ¥, 0row). This might be seen
as a manifestation of the ancient Aristotelian concept
of propagation as an active process as opposed to the
mere force free, momentum controlled motion, which
later came to dominate human imagination regarding na-
ture’s principles. In the framework of a linear stability
analysis of a stationary DS (o, w), the bifurcation to trav-
eling ones thus requires a generator e, obeying L eg =g,
leading to a (g, e,)-subspace representation of L as (3 §
The existence of such an e, can be characterized making
use of Lt — the adjoint of the operator L — and its zero
eigenfunction gt. Abbreviating spatial integration by ()
the key equation results as follows: From Ltg! = 0 we
have 0 = (Lgf|ey) = (gt|Le,). Thus we find
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(g'lg) =0 (6)

as a necessary condition. As outlined in [16], system
(1) has the exceptional property that g' can be ex-
pressed in terms of (Op,¥,0;,w) for arbitrary e. It is
(—€&T0reU,0rew). In general, we cannot assume a sym-
metrical pattern (7,w). Thus there is a direction rg
where the above mentioned branching occurs first when
decreasing 7. Otherwise, we consider a representative
Irepr Of a certain set of directions. We can directly con-
clude that

(('—ETal‘o'av al'ou_)) (al'ol_}’ al'ou_)»

= ((—€T0p U, Or,w)Leg)
= (L1 (—€T8r o0, Oro W) €g) =0 (7)

~

0

is necessary for ey to exist. In other words, the critical
value of 7 for the branching of traveling patterns is

f(am'lﬂ)2 dz dy
f(a,oa)z dedy’ (8)

eT =

III. CONSTRUCTION
OF A TRAVELING STRIPE

Let us return to a stripelike DS. Here the criterion
is independant of the direction rg. Drawing a distinc-
tion between different directions is misleading, since it
incorporates shifts parallel to the stripe, which are mean-
ingless, of course. In principle, the computation of the
traveling pattern is a problem in one-dimensional space.
For simplicity, we restrict our considerations to patterns
moving in positive directions. In the singular limit ¢ — 0
the pulse consists of a front at p, and a back at p_.
Both contract to a width of O(¢); see Fig. 2 for a station-
ary pattern. Their velocities depend on the local values
w(p+) at the front position p; and the back position p_.
These values are determined by the inhibitor dynamics
with v slaved to the respective branch of the characteris-
tic aside from front and back. To be specific, let us study
the situation for piecewise linear kinetics. We transform
the coordinates to a moving frame z = = — ¢t with arbi-
trary but fixed velocity c¢. Then we look for a distance
d = py —p_ such that there is an appropriate solution @w
of the domain dynamics that is stationary in the frame.

In the excited domain between p_ and p,, component
v takes the value ©#(z) = 1 — w(z); outside this domain,
9(z) = —w(z) holds. Thus, for € — 0 the inhibitor equa-
tion reads

0=ew'(z) +u"(z) +{ )} -1 +ma),  ©)
with 1 between p_ and p; and 0 elsewhere. For z — o0
the value of @w approaches the homogeneous equilibrium
value w = 0. The excited domain between p_ and p
can be interpreted as a moving inhibitor source. The
inhibitor produced diffuses and decays laterally. Due to
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the linearity of the equation, the effects of different parts
of this source can linearly be superposed. The Green’s
function dependence on c can be obtained from (9)

2
Go(z) = ——1~———-exp (‘;Z_IZH/%'*‘l""Y) .
24/S + 147

(10)

A solution of (9) is stationary in the moving frame. Its
values w(p.+) just depend on the pulse widthd = p, —p_:

d d
1I;(p+):/0 Go(z)dz and w(p_):/o Go(z — d) dz.

(11)

By explicit construction of the solution, the dependence
of the velocities of the front (c4) [back (c_)] on the local
inhibitor value w(p4) can be expressed as

FAo(ps) - (3—0a)]
rfi-wrs) - G- o

compare [12]. Thus we can uniquely determine d as a
function of ¢: For any traveling DS, d has to be chosen
numerically such that c; (w(p4+)) = c—(w(p-)). Then a
matching of ¢y with the velocity ¢ of the frame occurs
for a certain value of 7. Altogether, we can parametrize
the whole family of traveling stripes by their velocity c.

The stationary pattern possesses the reflection symme-

try

(2) (=25) = (5) (=57 ) 09

w 2 w 2

Due to this symmetry, the bifurcation to traveling DSs
is a pitchfork bifurcation. The possibility of computing
the traveling DSs and the corresponding values of 7 as
a function of c offers a way to systematically distinguish
between supercritical and subcritical branching from the
stationary solution. For larger values of € this has al-
ready been analyzed for some selected parameter values
[17]. In our case we get a subcritical branching within
nearly the whole parameter range. There is only a very
small region close to the case of odd symmetrical kinet-
ics (a = m:{ﬁ) with supercritical bifurcations. The limit
a— m leads to a diverging width d of the DS. Then
coupling between front and back, which is mediated by
the domain variable w, vanishes and thus we consider
more and more the case of the bifurcation of a single sta-
tionary front. This approach is correct only in the case
of an odd symmetrical kinetics as outlined in [25]. Con-
sequently, we find a supercritical branching for a single
front in the case of the piecewise linear kinetics, which
is outlined in the Appendix. However, this result can-
not be generalized at all. Without odd symmetry of the
characteristic f(v,a) for fixed parameter a, the expected
bifurcation for a single front is transcritical and thus fun-
damentally different from the pitchfork bifurcation of the
DS with arbitrarily large width. Note, however, that for
vanishing inhibitor diffusion the bifurcation of the sin-

P+ =cy =

(12)
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gle front is pitchfork irrespective of form and symmetry
properties of f(v,a) in (1); see [16].

IV. STABILITY ANALYSIS
OF THE TRAVELING STRIPE

In the following, we study the stability of a traveling
stripelike DS. In the linear approximation (3) only the
Laplace operator acts nontrivially in the lateral spatial
direction. Thus the y dependence of the eigenmodes is
harmonic, i.e., we can write the corresponding perturba-
tions of front and back lines as

p(y) = px + px(t) cos(ky + ¢). (14)

The time dependence of the amplitudes . cos(ky + @) is

d . -
7P = AP+, (15)

with A being the corresponding eigenvalue. The dynam-
ics of v in the domains is slaved by w. The corresponding
change of ¥ := v — ¥ depends on W := w — W according to
the relation ¥(z) = —@(z). Close to the front lines, the
variation of the inhibitor source is described in terms of

a 0 function. Altogether, the corresponding eigenmode
fulfills

AW = cW, + Wy, + Wyy — (1 + v)W
+8(2 — pa) [+ cos(ky + ¢)]. (16)
w has the form @(z) cos(ky + ¢):
A = e, + Wy — (L+ 7 + k%) + 8(z — px) (£p+).
(17)

According to the preceding section, Eq. (17) can be
solved with the help of its Green’s function, which now
additionally depends on the eigenvalue A\. We will re-
strict our considerations to bifurcation points. That is,
A = iw for Hopf bifurcation points and A = 0 for station-
ary instabilities in the moving frame. This yields

1
2\/943+1+'y+k2+iw

2
X exp <—--Zc-z——|z|\/cz+l+'7+k2+iw).

(18)

Gk,w (z) =

We therefore have to take as a complex square root the
one with a positive real part. The values w(p+) are then

uAJ(p+) = -Gk,w(d)ﬁ— + Gk,u(o)ﬁ-i-’ (19)
ﬁ)(P—) = ‘Gk,w(o)ij— + Gk‘w(_d)ﬁﬁ—' (20)

The dynamics of § is based on three sources. First, the
local value w at p++p+ cos(ky+¢) changes due to the dis-
placement p4 relative to the moving frame. This change
is proportional to the slope of w(z) at p+. Second, there
is the local modification of w due to the dynamics of .
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These two influences are illustrated in Fig. 3. Third, the
velocity depends on the local curvature of front and back
lines. The corresponding approximating relation for the
velocity in the normal direction has been computed for
various problems; see Meron [19]:

C2dim = Cidim + 67, (21)

with K being the local curvature of the front. Altogether,
we get as approximation

Mpx = i (B(ps))[@ (p+)Px + D(ps)] — ek’ 5y, (22)

with w,(p4+) = Go(d) — Go(0) and w.(p-) = Go(0) —
Go(—d). Note that from (12) the following holds:

s =l (w(p+)) = —c(w(p-))
-1

IR SOt

A word is now in order concerning the curvature term.
It seems to be inconsequential to regard only this term
linear in €. However, when choosing larger and larger
wave numbers k there is an arbitrarily large influence
of curvature in (22). For a fixed but arbitrary value of
€ this influence dominates and has an important effect.
For k — oo, the term w(p4+) in (22) vanishes completely
because the front modulation, as the driving source in
Eq. (16), is of high spatial wave number. Hence, the
resulting effect on 0 is smoothed out by the diffusion of
w. Thus, when formally omitting ek?p., the remaining
first term leads to an instability at high wave numbers
k, and that is physically invalid. Inserting w(p+) and
W, (p+) into (22), we get

iwpy = /[Go(d) — Go(0)]p+ + /[~ G, (d)f-
+Grw(0)p4] — ek 1py,

iwp_ = —c'[Go(0) — Go(—d)]p— — ¢'[~ G w(0)p—
+Ghw(—d)p4] — ek?r 1p5_,

(23)

(24)

and, by elimination of $; and $_, a final critical eigen-
value equation

w
W(p)+W’(p) P
+#(p)

W(z)+W(z)
)4@)

FIG. 3. Local value of w(p+), which determines the veloc-
ity of the front, changes due to the dynamics of w (@) and
the shift of the front position (@' (p+)p+]-
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0 = {—c'[Go(d) — Go(0) + Gr,w(0)] + ek?r7 ! +iw}
x{—c'[Go(—d) — Go(0) + Gk, (0)] + ek r 4w}
—c2Gr 0 (d) G (—d). (25)

Before we start to evaluate this equation for ¢ = 0.05
and v = 1/3, we have to check the limits of our ap-
proximation. There are three points. First, ignoring
the direct interaction of front and back caused by the
activator component v excludes consideration of pat-
terns with small width d. Neglecting this for a mo-
ment, we can compute a traveling pattern as discussed
above. Decomposing ¥ into front and back parts —
o = 0g(x — p+) + Up(x — p—) — Tp(00) — a correction
Ac of front and back velocity can be computed using an
extension of [26] and [27] to this case. The result for
the back, which is always larger than the corresponding
expression for the front, is

TAcz<—%—\/(—cZ——)i+1> \/(CZ—)erl

X exp |:— <~%t + gc’;i + 1) g:‘ . (26)

This expression becomes large for small patterns, i.e., for
1

a close to 5 and ¢ = 0. In those situations that we are
going to analyze later, TAc is at most 0.03 and rapidly
decreases by orders of magnitude when changing ¢ or a.

But even for small values of 7Ac there may be devi-
ations of the singular limit dynamics due to imperfect
separation of scales for ¢ & 1. This is the second point.
However, for ¢ = 0 and € = 0.05, Ohta, Mimura, and
Kobayashi [11] investigate such deviations of the reduced
dynamics from the full dynamics. They find negligibly
small differences.

A third point is the influence of curvature. Choosing
any fixed perturbation amplitude, large wave numbers
k require consideration of higher orders of €. But these
wave numbers are of no relevance for stability. Thus this
effect is of no significance in our analysis. In the follow-
ing, we numerically evaluate Eq. (25) for ¢ = 0.05 and
v = 3. For ¢ = 0 our results coincide with those of [11].
There, we study stationary bifurcations and transitions
to oscillating front patterns via Hopf bifurcations. The
bifurcating modes are of zig-zag type if p_ and p, have
equal signs. In the case of a varicose mode the signs
are different; see Fig. 4. For ¢ > 0, there are lines of
stationary bifurcation points starting from ¢ = 0. With
increasing velocity ¢ > 0 the mirror symmetry (13) of the
stationary pattern gets lost. Thus the absolute values of
P+ of an eigenmode differ from each other. However,
the relation between signs is preserved on those lines and
with that (relation) the type of instability. Otherwise,
there would be a critical mode with 5_ or , equal to
zero. By inspecting (24), this immediately turns out to
be possible only for the Goldstone mode with p, = H_
for k = 0.

In addition to stationary bifurcations, there is the pos-
sibility of Hopf bifurcations. For ¢ = 0 we can again dis-
tinguish between varicose and zig-zag modes. Their dif-
ference may be interpreted as a temporal phase shift be-
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(a)

(b)

X

FIG. 4. Typical shape of a zig-zag (a) [varicose (b)] pertur-
bation. The dark domain represents the excited part of the
system.

tween p4 and p_, which is 7 and 0, respectively. But this
phase shift is not fixed along the lines of Hopf bifurcation
points starting from ¢ = 0. Thus, here the above classi-
fication cannot be done strictly. However, a line starting
at the varicose Hopf instability for ¢ = 0 is further called
varicose, and the same is done for the case of a zig-zag
instability. Let us consider the bifurcation set in typical
situations. In the following, we parametrize the family of
branching traveling DSs with their velocity c instead of
T, since their dependence on 7 is ambiguous due to the
subcritical branching; see Fig. 5 for illustration. The bi-
furcation set is presented in Fig. 6 for different values of
a. In a one-dimensional system the pattern becomes sta-
ble at a saddle node bifurcation point, which is marked

by a dot. It is apparent that the range of stationary
10+ -
o sl 4
ol : { .
0.10 0.15 0.20 0.25

T

FIG. 5. Relation between velocity ¢ and bifurcation param-
eter 7. The stationary pattern is destabilized with respect to
the traveling mode for decreasing 7. Due to the subcritical
branching, the dependency on ¢ (7) is ambiguous. Parameters
are vy = 1/3 and a = 0.25.
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varicose instability lies completely within the zig-zag un-
stable region for all situations considered. Thus it seems
to be impossible to get a varicose destabilization of a sta-
ble pattern. When a — 2(*117)’ the width d gets larger
and larger. Then coupling between front and back gets
weaker and weaker. Consequently, the bifurcation lines
of the respective modes converge from Figs. 6(e) to 6(a).
In each diagram there is a line of Hopf bifurcation points
starting from the varicose bifurcation point at ¢ = 0. All
these lines terminate below the saddle node bifurcation
point. From Figs. 6(a) to 6(e) parameter a is increased.
In Fig. 6(a) both stationary instability regions still ex-
tend beyond this point, whereas it is only of the zig-zag
type in (b). The stationary varicose instability has com-
pletely disappeared in Fig. 6(c). Increasing a further, the
zig-zag instability sets in at a velocity ¢ > 0 and com-
prises the saddle node point (d). There is a line of Hopf
bifurcation points starting from the origin and terminat-
ing at the line of static zig-zag instability. At the intersec-
tion point we have a codimension-two situation. Due to
the symmetry of the pattern, the static bifurcation is of
pitchfork type. The surrounding of the codimension-two
point represents an unfolding of the complete scenario
of a symmetrical Takens-Bogdanov bifurcation; see [28],
Chap. 7.3. This implies the existence of additional global
bifurcation points. Increasing a further, there eventually
are no stationary instabilities at all for wave numbers
k > 0 (e). Instead, we find a line of zig-zag Hopf bifurca-
tion points joining the origin with the saddle node point.
It is this line that an attentive reader may have expected
in all the figures. The reason is the following: In the ori-
gin and at the saddle node point there is a double zero
eigenvalue. Since there is no second zero eigenmode in
addition to the Goldstone mode, both degeneracies are

of the type (g (1)) Arnold [29] presents a miniversal

unfolding of this case, which is two dimensional. Within
this unfolding, there is a one-dimensional submanifold
with purely imaginary eigenvalues. The points on such
a manifold represent Hopf bifurcation points in a nonlin-
ear system starting from zero frequency in the degener-
ate point. However, the submanifold with purely imagi-
nary eigenvalues is limited by the submanifold with zero
eigenvalues. At the other side of the latter manifold the
eigenvalues are real with different signs. Our unfoldings
by c and k are two dimensional and thus we would expect
a line of Hopf bifurcation points within them. The sub-
manifold with zero eigenvalue is the line defined by & = 0.
However, k appears only as a square in (25), i.e., at the
SN point we have only one half of the unfolding. At the
origin it is just a quarter, since the situation for ¢ > 0
is symmetrical to that of ¢ < 0. Only when the parame-
ter range close to the SN point is stable with regard to
zig-zag perturbations is there a Hopf line. For the unsta-
ble case we can find this line for negative k2, which is of
course without physical significance. Referring to the re-
lation between traveling and rocking DS mentioned in the
introduction, the incorporation of boundaries also repre-

sents a perturbation of the ( E (1) ) situation due to viola-
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tion of the translation symmetry. When the distance be-
tween DS and the boundaries becomes larger and larger,
this perturbation becomes weaker and weaker. Thus the
length of the system can be regarded as an additional un-
folding parameter. Provided that the boundaries have a
repulsive effect on the DS (see, e.g., [1]), there is a stable
stationary DS for large values of 7, i.e., we can explicitly
exclude the saddle situation. Thus we will find a Hopf
bifurcation to swinging DS due to the perturbation.

Let us consider now the last bifurcation bringing stabil-
ity to the traveling DS with increasing c. In Fig. 6(e) this
is a Hopf instability and in (a)—(d) the stationary zig-zag
instability. The last modes to stabilize are those close to

(a) |

=~ 2 static var i
1 .
0 L
0 1 2 3 4 5 6 7
(o]
5 T T T T T T
(c)
4 4
3 static zz i
x

var Hopf
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k = 0. Therefore, the zero eigenvalue at k = 0, which is
due to translation symmetry, remains unaffected. This
scenario is known from the Eckhaus instability occur-
ring in hydrodynamics and in connection with the Tur-
ing bifurcation in reaction-diffusion systems. There, the

primarily branching mode has a zero eigenvalue and the

neighboring modes are the last to stabilize. When vary-
ing c, the evolution of the eigenvalues is indeed the same
in our situation, which can be seen in Fig. 7. The wave
number with the largest positive eigenvalue lies in the
midst of the unstable region. Finally, we would like to
stress that the location of the last stationary bifurcation
point depends on the value of . This might be aston-

0 1 2 4 5 6
C

5 T T
(e)

4+

3F

X

2t
var Hopf

1

0 L L

0 1 2

static var
x
2 4
1
1F 4
var Hopf
0 1 1 e 1 1
0 1 2 3 4 5 6
(o]
5 T L T T T T
(d)
4+ 4
3r static zz 1
X
2 4
var-Hopf
1k 4
zz-Hopf,
0 L L Py L
0 1 2 3 4 5 6
[o]
T T T
zz Hopf i
A 1 'I
4 5 6

FIG. 6. Dependence of bifurcation points on c and k. Zig-zag and varicose are abbreviated as zz and var, respectively. v = L.
The saddle node bifurcation in a one-dimensional system is marked by a dot. The lines of Hopf bifurcation lines are denoted
according to the situation at ¢ = 0. The values of a are 0.2 (a), 0.25 (b), 0.3 (c), 0.38 (d), 0.43 (e).



4472

(a) T T T T T
0.00

-0.01 | .

< -0.02 - 1

-0.03 .

.0.04 L L L L L
0.0 0.1 0.2 0.3 0.4 0.5 0.6

(b) ' , - -

-0.01 ]
-0.02 - 4

-0.03 1

_004 1 L 1 1
0.0 0.2 0.4 0.6 0.8

k

FIG. 7. Dependence of the largest eigenvalue on the wave
number k for a stable (a) [unstable (b)] pattern. The
parameter values are a = 0.38, v = % In (a) we
have 7 = 0.0698 (c = 4.9), whereas (b) is computed for

7 = 0.0692 (c = 5.05).

ishing at first, since this last bifurcation corresponds to
k — 0, and for k£ = 0 the influence of €, entering along
with the curvature of the perturbation, vanishes in our
approximation. However, emphasis is on &k — 0 in the
previous sentence. The case £ = 0 is qualitatively dif-
ferent, since the corresponding perturbation is a mere
translation with eigenvalue zero due to translation sym-
metry, i.e., for £ = 0, especially in the one-dimensional
case, there is no zig-zag instability at all. The limit
k — 0 is governed by the second derivative of the spec-
trum A(k)|x=0 (see Fig. 7), which depends on e.

We evaluated (25) for other values of y. When chang-
ing a, we found no qualitative differences from the pre-
sented scenarios.

V. SUMMARY

We analyzed the branching off of traveling DS’s
from stationary localized patterns in two-dimensional
reaction-diffusion media. For systems with Bonhoeffer—
van der Pol kinetics, an integral criterion allows for the
computation of the bifurcation point in terms of the sta-
tionary pattern. Close to the singular limit an analyti-
cal treatment of stripelike patterns is possible for piece-
wise linear kinetics. The bifurcation to traveling patterns
appears to be predominantly subcritical. The traveling
stripes undergo a sequence of bifurcations, where the last
mode to stabilize is typically of zig-zag type. The related
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bifurcation scenario corresponds to that of the Eckhaus
instability. In connection with this result, the question
about branching patterns is of great interest. A sub-
critical bifurcation would possibly lead to a decay of the
stripe into a large number of spots, whereas a supercrit-
ical bifurcation leads to laterally periodically modulated
patterns. The supercritical case could be studied by a
weakly nonlinear analysis, whereas the subcritical case
essentially requires numerical computations.
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APPENDIX: BIFURCATION
OF A SINGLE FRONT STRUCTURE

There is a stationary solution of (1) with piecewise
linear kinetics (2) with a single front for ay = PIeE=E
Let us treat the case of a front from high to low values of
v. In the limit € — 0 the velocity of this front depends
on the local value of the domain variable w(p):

2[% — ao — w(p)]
Vi-13—a0—w)?

_ 2l —w@)] (A1)

Vi~ e — @

Depending on this value w(p) we can compute the veloc-
ity for the domain variable

4./1 S
cw(w(p)) = N Flaey — w@)]

Teo(w(p)) =

(A2)

iy — 4w - 555 )?

that is, the velocity of a solution of (9) with 1 for z < p
and 0 for 2z > p and w = w(p) at the front posi-
tion p. For wy := w(p) = 71—1:%77_) there is a station-
ary front independent of 7. For a bifurcating branch
of front with ¢ # 0 to exist, we must require that
cy(w(p)) = cw(w(p)). Decreasing v we get destabiliza-
tion of the stationary front when passing the bifurcation
point with ¢, (wo) = ¢|,(wo). This condition is fulfilled
for 7. = 1—41-7 Due to the odd symmetry of the kinetics,
the second derivatives are zero at that point. Thus there
is a pitchfork bifurcation, and the third derivatives for
T = T, determine whether a subcritical or a supercriti-
cal bifurcation occurs. We compute ¢l = (1+v)c))’. For
positive v, branching solutions occur for decreasing 7 and
thus we have a supercritical bifurcation. In general, the
kinetics has no odd symmetry. The second order terms
at the zeros of the equations corresponding to (Al) and
(A2) generically result in a transcritical bifurcation. To
study the pitchfork bifurcation of a DS we must consider
the coupling between front and back in any case.
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